Convex nonnegative matrix factorization with manifold regularization
نویسندگان
چکیده
منابع مشابه
Learning manifold to regularize nonnegative matrix factorization
In this chapter we discuss how to learn an optimal manifold presentation to regularize nonegative matrix factorization (NMF) for data representation problems. NMF, which tries to represent a nonnegative data matrix as a product of two low rank nonnegative matrices, has been a popular method for data representation due to its ability to explore the latent part-based structure of data. Recent stu...
متن کاملSpeech enhancement using convolutive nonnegative matrix factorization with cosparsity regularization
A novel method for speech enhancement based on Convolutive Non-negative Matrix Factorization (CNMF) is presented in this paper. The sparsity of activation matrix for speech components has already been utilized in NMF-based enhancement methods. However such methods do not usually take into account prior knowledge about occurrence relations between different speech components. By introducing the ...
متن کاملConvex Nonnegative Matrix Factorization with Rank-1 Update for Clustering
In convex nonnegative matrix factorization, the feature vectors are modeled by convex combinations of observation vectors. In the paper, we propose to express the factorization model in terms of the sum of rank-1 matrices. Then the sparse factors can be easily estimated by applying the concept of the Hierarchical Alternating Least Squares (HALS) algorithm which is still regarded as one of the m...
متن کاملRobust Nonnegative Matrix Factorization via L1 Norm Regularization
Nonnegative Matrix Factorization (NMF) is a widely used technique in many applications such as face recognition, motion segmentation, etc. It approximates the nonnegative data in an original high dimensional space with a linear representation in a low dimensional space by using the product of two nonnegative matrices. In many applications data are often partially corrupted with large additive n...
متن کاملQuantized nonnegative matrix factorization
Even though Nonnegative Matrix Factorization (NMF) in its original form performs rank reduction and signal compaction implicitly, it does not explicitly consider storage or transmission constraints. We propose a Frobenius-norm Quantized Nonnegative Matrix Factorization algorithm that is 1) almost as precise as traditional NMF for decomposition ranks of interest (with in 1-4dB), 2) admits to pra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Networks
سال: 2015
ISSN: 0893-6080
DOI: 10.1016/j.neunet.2014.11.007